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High accuracy doesn’t always mean high-quality descriptors. We introduce Global Alignment and CLIP Similarity—two alignment-based metrics
that evaluate the relationship between text-based visual descriptors and the underlying vision-language models beyond accuracy.

MOTIVATION Global Alignment CLIP Similarity Metric
Text-based visual descriptors are widely used with Research Question: Can we evaluate the quality of the representation space Research Question: Can we evaluate how well a descriptor aligns with
vision-language models for concept discovery and induced by a visual descriptor set? CLIP’s pre-training data?
classification. While often evaluated by classification Key Idea: Use representational alignment metrics to compare the visual Key Idea: Find CLIP pre-training captions that match a descriptor using
accuracy, this metric alone offers limited insight into descriptor space to a reference image embedding space. KNN in CLIP embedding space and a threshold hyperparameter t.

descriptor quality or interpretability.
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ESCHER: Iteratively refined CBD descriptors. CLIP Similarity: average similarity between each matched image-caption pair.

DCLIP & WaffleCLIP: [class names] + [random attack string]
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than CBD but have better accuracy. 2) CLIP tends to favor less frequent, more visually grounded descriptors over generic high-frequency ones.

2) Global Alignment can captures trends in descriptor quality that accuracy cannot!




